Pulsed Optoelectronic Rangefinder and Its Measurement Applications in Architectural Design Rationality Assessment

Author:

Cao Zhifang1

Affiliation:

1. Guangdong Innovative Technical College, Dongguan, Guangdong, 523960, China

Abstract

The laser rangefinder is a device that combines various technologies such as optoelectronics, electronics, microcontroller control technology, signal control, processing technology, and precision mechanical technology. This device has wide application value in aerospace, automatic control, industry, military, geodesy, and construction surveying, among other fields. The pulse laser rangefinder designed uses the SPLLL90_3 laser emitting diode for the laser emission circuit and employs the AD500_9 laser receiving diode for the laser reception circuit. The design of the laser emission circuit includes laser diode selection, emission, sample signal’s modulation circuit design, pulse signal generation, and driving circuit. The design of the laser reception circuit includes laser receiving diode selection, laser reception pulse signal’s acquisition circuit, reception signal adjustment circuit, and microcontroller peripheral circuit. After completing the hardware design of the pulse laser rangefinder, performance testing is conducted. The laser emission waveform and reception waveform are tested under an oscilloscope. The results show that the emission pulse generation and reception pulse acquisition circuits work normally. Range tests show that the rangefinder has a high degree of fit between theoretical and actual measurement distances within a certain time interval, meeting the design expectations. The designed optoelectronic rangefinder is adopted to evaluate the rationality of the design of building wall freeform surfaces through measurement. The results suggest that the designed optoelectronic rangefinder achieves higher detection efficiency and accuracy compared to traditional evaluation methods.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3