A Kirchhoff Plate Model for Longitudinal Vibration Analysis of Restrained Nanoplate Including Thermal Effects

Author:

Hussin Amira Mohamed1

Affiliation:

1. Department of Mathematics, College of Science and Humanities in Al-Aflaj, Prince Sattam bin Abdulaziz University, Al-Aflaj 11912, Saudi Arabia; Department of Mathematics, Faculty of Science and Technology, Omdurman Islamic University, Omdurman, Sudan

Abstract

This work attempts to apply the Kirchhoff plate theory to find out the vibrational analyses of a nanoplate incorporating thermal effects. The effects of thermal environments on the natural frequency of longitudinal vibration of restrained nanomaterials, especially for restrained nanoplates, have not been investigated, and most of the previous research has been carried out for unrestrained nanoplates. Therefore, it must be emphasized that the vibrations of restrained nanoplate, including thermal effects, are novel and applicable to the nanodevices, in which nanoplates act as the main structure of the nanocomposite. A novel motion and frequency equation are derived using the Kirchhoff plate model. The present study illustrates that a nanoplate’s longitudinal vibration characteristics strongly depend on the temperature change and stiffness coefficients. The numerical results clearly show that the longitudinal natural frequencies of the nanoplate are less than unity for both cases of low and high temperatures. This means that applying the Kirchhoff plate model for restrained nanoplate analysis would lead to an over-prediction of the frequency if the small thermal stress effect is neglected. Finally, the investigation of the restrained and thermal impact on longitudinal vibration of nanoplates may be used as a valuable reference for the application and the design of nanoelectronics and nano-drives devices, nano-oscillators, and nano-sensors, in which nanoplates act as essential elements.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3