Charge Couple Device (CCD) Photoelectric Signal Data Acquisition and Its Application in the Machine Vision of Artificial Intelligence

Author:

Liu Yan1,Zeng Jianhang1

Affiliation:

1. College of Information Engineering, Zhengzhou University of Technology, Zhengzhou, 450044, Henan, China

Abstract

The development of Charge Couple Device (CCD) technology is particularly rapid in the fields of image sensors and non-contact measurement. In this study, a data acquisition device applied to CCD photoelectric detection system is designed. Among them, the design of the Differential Amplification (DA) module, Analog-to-Digital Converter (ADC) module, First In First Out (FIFO) cache module, and Complex Programmable Logic Device (CPLD) module in this device are emphasized. The ADC circuit in the ADC module converts two 4 MHz analog photoelectric signals generated by the CCD sensor at a frequency of 8 MHz, and then outputs 12-bit digital signals. The collected photoelectric signal is used to detect the damage to the surface of ancient buildings with the machine vision technology of artificial intelligence (AI). In the test, the DA circuit can adjust the voltage range of two photoelectric analog signals output by CCD to a predetermined range (1.5 V∼2.0 V). In the ADC circuit test, there is no data in the FIFO when there is no input conversion, and the converted data will be stored in the internal FIFO during the conversion clock period. Based on machine vision technology, surface damage types of ancient buildings are defined, namely spalling, cracks, and disruption, and surface image samples are generated from collected signals. The samples are trained using the convolutional neural network, and the classifier is generated. The test reveals that the designed photoelectric signal acquisition device and AI machine vision technology can accurately classify the surface damage of ancient buildings.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3