Analysis on Performances and Flow Fields of a Single Waterjet Propeller Based on SST kω Model

Author:

Zhang Lingfei1,Hou Longfeng1,Tao Yihao1

Affiliation:

1. University of Shanghai for Science and Technology, School of Energy and Power Engineering, Shanghai, 200093, PR China

Abstract

As a special method of ship propulsion, waterjet propeller has been widely used in military and civilian fields due to its advantages of simple structures and high propulsion efficiency. Affected by waves of sea and rotation of impeller, the internal flow of waterjet propeller is extremely complex on three dimensions. When waterjet propeller works, its turbulent flow is often accompanied with unstable phenomena like flow separation, secondary flow, and backflow. On the other hand, the impeller of the propeller will be easily cavitated if it runs at high speed. That has a serious impact on performance and structure of the propeller. Therefore, understanding the open water performance and cavitation characteristics is imperative. In this study, we analyze the performance and flow field of a single marine external waterjet propeller based on the SST kω model. We focus on examining its performance under various advance coefficients in open water conditions. The experimental results show that the distributions of streamline and inlet velocity are more uniform at the highest efficiency point than other operating conditions. The loss for the generation of entropy is relatively low at the same time. The analysis on cavitation shows that the volume of the cavitation bubble will increase gradually as the cavitation number of the propeller decreases. Meanwhile, the performance of the propeller decreases obviously at the blade tip extending from the rim to the hub.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3