Anticorrosion Behavior of ZnO Nanoparticles Coated on Mild Steel in NaCl Solution

Author:

Subhasree S.1,Anitha P.1,Kannan K.1,Ramachandran A.1,Sheri J. J.2,Jayavel R.3

Affiliation:

1. Department of Chemistry, Government College of Engineering, Salem 11, India

2. Department of Biosciences, Mangalore University, Mangalagangotri 574199, India

3. Centre for Nanoscience and Technology, Anna University, Chennai 600025, India

Abstract

This work focuses on the environment protected, ecological procedure by the combination of ZnO nanoparticles utilizing the extraction of Ocimum sanctum. The prepared nanoparticles are examined by different methods like Fourier-transform infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Energy Dispersive X-ray Analysis (EDAX). A systematic study has been made on the result of ZnO nano-coating for the corrosion behavior of mild steel. The ZnO nanoparticles of average diameter in the range 18–22 nm were coated on mild steel in nickel bath solution. The anticorrosion properties on the coated mild steel was carefully tested in 3.5% NaCl solution by performing potentio-dynamic polarization measurement and electrochemical impedance spectroscopy. Surface morphology of the coated mild steel immersed in corrosive solution was judged by using SEM with EDAX. The ZnO nano coating has shown a perfect protection against corrosion and the shielding capability is in the range between 86–95%. The incorporation of ZnO nanoparticles has upgraded the process of mild steel in all corrosion media are subjected to investigation.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3