Arg-Gly-Asp Peptide-Functionalized Superparamagnetic γ-Fe2O3 Nanoparticles Enhance Osteoblast Migration In Vitro

Author:

Liu Xue1,Yang Xiao-Ling1,Hu Qiao2,Liu Mao-Shi1,Peng Tao1,Xu Wen-Feng1,Huang Qiu-Hong1,Li Bo2,Liao Xiao-Ling1

Affiliation:

1. Institute of Biomedical Engineering, Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China

2. Institute of Biomedical Engineering, Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China

Abstract

Making osteoblast migration manageably target to injury sites has been the key challenging in cell therapy for bone and cartilage regeneration. Superparamagnetic materials, the magnetic guide for cell migration, have been applied to increase cell retention. However, additional targeting modifications are still needed to accelerate the low uptake efficiency and moving speed. Arg-Gly-Asp peptide (RGD)-functionalized magnetic nanoparticles showed cutting-edge competence in cell differentiation control and targeted drug delivery. However, more evidence was required to corroborate its role in osteoblast migration in bone repair. In the present study, RGD-modified γ-Fe2O3 nanoparticles (RGD-Fe2O3 NPs) were prefabricated with the grafting ratio of 33.3–37.4%. The RGD-Fe2O3 NPs unveiled excellent water dispersibility with uniform size distribution at 5–6 nm and negligibly low cytotoxicity. As a result, MC3T3-E1 osteoblasts treated with RGD-Fe2O3 NPs boosted its migration speed in a magnetic field compared with those incubated with unmodified Fe2O3 NPs. Furthermore, osteoblasts treated with RGD-Fe2O3 NPs exhibited more Fe uptake. The results exposed the fact that RGD-mediated specific cellular uptake presented higher efficiency than the non-RGD-mediated one, resulting from a stronger superparamagnetic force between the labeled cells and the magnetic field. These findings indicate that the RGD-functionalized Fe2O3 NPs can promote osteoblast migration in the magnetic field, providing a promising strategy in magnet-guided cell therapy for bone and cartilage regeneration.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3