Affiliation:
1. Department of Chemical Engineering, Kongju National University, Cheonan, Chungcheongnam-do 31080, South Korea
2. Agency for Defense Development, Deajeon 34186, South Korea
Abstract
A hexaaluminate support was prepared by a co-precipitation method, and a metal (Cu, Pt, or Ir) was impregnated on the support to prepare a powdered catalyst. After that, organic and inorganic binders were added to the powdery catalyst and then pellets were formed. The so-formed catalysts
were heat-treated at 1200°C, and their physicochemical properties were analyzed by N2-adsorption, X-ray diffraction (XRD), X-ray fluorenscence (XRF), and scanning electron microscopy (SEM). The decomposition activity of the catalysts on an ammonium dinitramide (ADN)-based liquid
propellant was evaluated repeatedly, and the effects of catalyst composition and morphology on low temperature decomposition activity and durability were investigated. It was confirmed that the Cu-hexa-pellet, Pt-hexa-pellet, and Ir-hexa-pellet catalysts could be recovered and reused as a
catalyst for decomposition of an ADN-based liquid monopropellant. The initial activity and the thermal stability of the Cu-hexa-pellet catalyst for the decomposition of ADN-based liquid monopropellants were better than for the other catalysts. The better activity of the Cu-hexa-pellet catalyst
seems to be because the dispersion of the copper was higher than the metal dispersion in the other two catalysts.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering