Technology Computer-Aided Design-Based Simulation Program with Integrated Circuit Emphasis Model for Back-Channel-Etched Thin-Film Transistors with Floating Metal Components

Author:

Kim Kihwan1,Kim Myungeon1,Cho Hyunguk1,Cho Youngmi1,Kim Yongjo1,Choi Byoungdeog2

Affiliation:

1. Computer Aided Engineering Team, Samsung Display Company, 1 Samsung-ro, Kihueng-gu, Yongin-si, Gyeonggi-do, 17113, Republic of Korea

2. Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea

Abstract

We report thin-film transistors (TFTs) with floating metal using a back-channel-etched (BCE) process. Since the BCE process reduces the active mask step compared to other processes, it has attracted attention as a back-plane process that could be used for mass production. To realize the long channel in the BCE process, a floating metal is required; this acts as a bridge in the middle of the channel. We used TCAD (Technology computer-aided design) simulations (Atlas 3D) to predict the characteristics of a-Si TFTs with various active layer thicknesses and numbers of floating metal components; simulation results were compared with real measurements. We explain why TFTs do not scale ideally when floating metals are used; this is related to the resistance and thickness of the active channel. If a thick and highly resistive active channel is used, a larger number of floating metals will require greater correction for ideal scaling. Additionally, considering the capacitance between the source metal and channel, the channel influence under the floating metal should be about 89%. We also suggest a new SPICE (Simulation Program with Integrated Circuit Emphasis) model for TFTs with floating metal based on TCAD simulations.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3