pH-Sensitive Drug Delivery System Based on Mesoporous Silica Modified with Poly-L-Lysine (PLL) as a Gatekeeper

Author:

Lee Nam-Kyoung1,Park Sung Soo1,Ha Chang-Sik1

Affiliation:

1. Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea

Abstract

In this work, we synthesized a novel pH-triggered drug delivery system to enhance the bioavailability of the anticancer drug doxorubicin (DOX) through the gatekeeper poly-L-lysine (PLL) on the pore entrances of mesoporous silica nanoparticles (MSNs). Firstly, mesoporous silica was selected as the inorganic support for drug loading. Secondly, PLL was employed as the gatekeeper to control the cargo transport. In a neutral environment, the PLL brushes became shrunken and formed a dense barrier on the pore entrances of PLL/MSNs, which closed the pores and thus prevented the release of cargo. In an acidic environment, the cargo was released from the carrier PLL/MSNs because the pore entrances were opened by the swollen PLL brushes. The DOX-loaded PLL/MSNs (PLL/MSNs-DOX) showed 1.5 times higher drug release under acidic condition (pH = 4) than under neutral condition (pH = 7). During the drug release experiment for 48 h under acidic condition, PLL/MSN-DOX released about 50% of the drug after 9 h and approximately 85% after 24 h, whereas pristine MSNs loaded with DOX (MSNs-DOX) released about 50% of the drug after 30 min and reached equilibrium after 24 h. The MSNs also demonstrated their effectiveness in storing anticancer drugs until the desired environmental trigger is present. Therefore, the pH-responsive MSNs have great potential as a targeting cancer therapy.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3