Effects of Recess Depth Under the Gate Area on the Vth-Shift for Fabricating Normally-Off Field Effect Transistors on AlGaN/GaN Heterostructures

Author:

Kim Zin-Sig1,Lee Hyung Seok1,Bae Sung-Bum1,Nam Eun Soo1,Lim Jong-Won1

Affiliation:

1. ICT Creative Research Laboratory, ETRI, 218 Gajeongno, Yuseong-Gu, Daejeon 34129, Korea

Abstract

Fabrication of normally-off field effect transistors (FETs) possessed uniform turn-on threshold voltage (Vth) is of special interests. In this work, they were fabricated using dry etching recess techniques under the gate region, with dry etching conditions of extremely low rate. We report how the recess depth under the gate area induced the Vth shift of normally-off FETs on AlGaN/GaN heterostructure, which were fabricated with a 1.5 nm/min etching rate. Chlorine-based inductively coupled plasma (ICP) was applied to perform the etching process for the AlGaN/GaN heterostructure. Devices were fabricated with different recess depths under the gate area, and examined to determine their performances, particularly the dependence of recess time and recess depth on Vth shift. The applied dry etching conditions resulted in a low-damaged and not-rough morphology on the etched surfaces of AlGaN/GaN. Fine controlled and well defined recess depth of the AlGaN/GaN heterostructure under the gate region was achieved with no etch-stop layers. Conventional fabrication processes were applied with the dry etching conditions of extremely low rate to fabricate normally-off MOSFETs of Al2O3/AlGaN/GaN. The achieved Vth of +5.64 V was high positive and the leakage current of off-state was measured as ~10−6 A/mm.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3