Characterization of Bilayer Organic Solar Cells with Carbon Nanotubes Using Impedance Analysis

Author:

Han Kyeongman1,Jun So-Yeon1,Lim Hyuna1,Bae Eunji1,Park Seung Hun1,Jung Donggeun1,Kwon Namic2,Yu SeGi2

Affiliation:

1. Department of Physics, Sungkyunkwan University, Suwon 16419, Korea

2. Department of Physics, Hankuk University of Foreign Studies, Yongin 17035, Korea

Abstract

Four organic solar cell (OSC) devices with the bilayer heterojunction architecture were investigated, where carbon nanotubes (CNTs) were doped within the acceptor layer. The power conversion efficiency (PCE) of the CNT-incorporated device with a concentration of 0.004 wt% is approximately 20% point higher than that of the reference one. As the concentration of CNTs became higher, the PCE of the devices deteriorated; this could be caused by the percolative connection of CNTs within the layer. The voltage dependence on the effective lifetime of the charge carriers, determined by Cole–Cole curves of the impedance analysis, was different for the reference and CNT-incorporating devices—the lifetime of the CNT-incorporated ones was shorter, possibly owing to the high local electric field near the CNTs. Controlling the concentration of CNTs below the critical concentration of percolation is a key factor in achieving high photovoltaic performance.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3