Affiliation:
1. Physics Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia; Physics Department, Faculty of Science, Assuit University 15167, Egypt
Abstract
New thin-film microstructure, with a homogeneous distribution of a crystalized one phase Co-rich magnetic nanoparticles, embedded in a Cu-rich continuous paramagnetic matrix was obtained. This structure has many of the characteristics deemed optimal for Giant Magneto Resistance (GMR).
These characteristics are; mean free path of the electrons in the matrix, granules/matrix interface roughness, the ferromagnetic concentration of the magnetic granules, and most importantly, the size distribution of the granules. This microstructure was created in Co-93at%Cu thin film, through
spinodal decomposition after a short time of aging that reached equilibrium by a growth and coarsening process. Main goal of the present work was the enhancement of the microstructure in order to pinpoint the optimum microstructural and magnetic feature that improves the GMR sensitivity and
stability in granular materials. Accordingly, Structural evolution of the thin films was controlled by the annealing time and temperature. Four-probe-technique was utilized to measure the GMR properties. GMR curve for a sample annealed at 150 °C was found to be stable and saturated even
at low magnetic field (<5 kOe). Microstructural evolution and compositional analysis of the thin film was investigated using in-situ transmission electron microscopy (TEM) and the energy dispersive X-ray spectrometer (EDXS).
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献