Controlled Synthesis of Coral-Like CuO Dendrites with Enhanced Photocatalytic Performance

Author:

Gao Feng1,Wu Yi1,He Xiang-Fei1,Yin Jia-Xuan1,Qin Li-Zhao1,Li Qing1

Affiliation:

1. Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), School of Materials and Energy, Southwest University, Chongqing 400715, China

Abstract

In this work, coral-like CuO dendrites were successfully synthesized by a solvothermal method in the mixed solvent of distilled water and ethanol with assistance of dodecyl trimethyl ammonium bromide (DTAB). The products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) analysis techniques, to investigate their structure and morphology. The coral-like CuO dendrites were about 1 μm in length, with many dendrites pointing to a common center. The influence of experimental conditions on morphology, such as volume ratio of water to ethanol, surfactant DTAB and molar ratio of Na2CO3 and Cu(CH3COO)2, was also discussed. Time-dependent experiment was carried out to explore the formation mechanism while a “particle-sheet-dendrite (PSD)” mechanism was proposed to explain the growth process. The as-prepared CuO dendrites were used to degrade methylene blue (MB) under visible light irradiation in the presence of H2O2, where over 98% of methylene blue (MB) was degraded in 1 h. Results from the study demonstrated that the as-prepared coral-like CuO dendrites exhibited enhanced photocatalytic performance and excellent stability and reusability.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3