Design on a Novel Titanium Dioxide Irregularly Distributed Bragg Reflector for Thin Film Silicon Solar Cells

Author:

Dai Kejie1,Zhao Xuan2

Affiliation:

1. Key Laboratory of Ceramics, College of Electric and Mechanical Engineering, Pingdingshan University, Pingdingshan 46700, China

2. Lassonde School of Engineering, York University, Toronto, M3J3L1, Canada

Abstract

Titanium dioxide, which leads an excellent optical performance, is proposed to design irregularly distributed Bragg reflector (IDBR) through theoretical simulation as well as experimental verification. Firstly, a primary distributed Bragg reflector (DBR) model with the titanium dioxide serving as low reflection layer in, and amorphous silicon as high reflection layer is analyzed. The titanium dioxide DBR shows much enhanced reflection bandwidth relative to the DBR with silicon dioxide. A further study suggests that a traditional titanium dioxide IDBR demonstrate much enhanced performance versus the silicon dioxide IDBR with similar structure. Besides, the reflection bandwidth of the IDBR, especially in the high wavelength range, is dramatically promoted with respect to the DBR. Finally, a novel gradient IDBR model is developed. The simulation results reveal a higher reflection bandwidth of the titanium dioxide gradient IDBR than the silicon dioxide one. The reflectance of the titanium dioxide gradient IDBR is up to 90% in a range by 300 to 1450 nm. And, the reflection bandwidth of the gradient IDBR is much improved respect to the traditional IDBR. It seems that the titanium dioxide gradient IDBR could be an efficient selection for the thin film silicon solar cells. Finally, the gradient IDBR were fabricated via plasma enhanced chemical vapor deposition (PECVD) on a silicon wafer. A further test demonstrates a reflectance over 95% in the range from 400 to 1400 nm, and verifies the simulation results.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3