The Role of Janus Kinase/Signal Transducer and Activator of Transcription Signalling on Preventing Intestinal Ischemia/Reperfusion Injury with Dexmedetomidine

Author:

Zhang Xuekang1,Zhou Jun2,Hu Qian1,Liu Zhengren3,Chen Qiuhong4,Wang Wenxiang4,Zhang Huaigen1,Zhang Qin1,Huang Yuanlu1

Affiliation:

1. Department of Anesthesiology, First Affiliated Hospital of Nanchang University, Nanchang 330006, China

2. Department of Neurology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital South Campus, Shanghai 201499, China

3. General Surgery, First Affiliated Hospital of Nanchang University, Nanchang 330006, China

4. Grade 2015 of Medical Department of Graduate School, Nanchang University, Nanchang 330006, China

Abstract

Dexmedetomidine (Dex) works as a crucial agent for the treatment of intestinal ischemia/reperfusion (I/R), but its mechanism remains unclear. Recent articles demonstrated the pivotal role of Janus kinase/signal transducer and activator of transcription (JAK2/STAT3) signalling in I/R. Therefore, it is reasonable to explore the associated mechanism of JAK2/STAT3 signalling in Dex treatment. The study purpose was to evaluate the JAK2/STAT3 signalling regulatory mechanisms of Dex in preventing I/R. Anaesthetized rats were subjected to superior mesenteric artery occlusion consisting of 1 h of ischemia and 2 h of reperfusion while served as controls. Animals received subcutaneous administration of 50 μg/kg Dex, JAK1 and JAK2 inhibitor, Ruxolitinib, selective JAK2 inhibitor, 10 mg/kg AG490 or STAT inhibitor and 0.4 mg/kg rapamycin; or Dex-treatment in the presence of α2-adrenoceptor antagonists Atip or Dex-treatment alone after I/R. Injury was scored histologically, apoptosis was detected via the apoptotic mediators caspase-3 and Bcl-2/Bax and the degree of activation of the JAK/STAT pathway was evaluated. Dex inhibited I/R injury by decreasing apoptosis significantly with rescue of cleaved caspase-3 and the Bcl-2/Bax ratio. Furthermore, phosphorylation of JAK2, STAT1 and STAT3 was affected, suggesting the involvement of activated JAK/STAT in response to Dex. Meanwhile, the JAK2 or STAT inhibitors AG490 and rapamycin, but not Ruxolitinib, exhibited a similar but even greater JAK2 and STAT3 regulatory effect, thus leading to a greater benefit. JAK2/STAT3 activation is crucial to the diminishing effect of Dex on mesenteric I/R injury; however, the efficacy and timing of Dex administration should be considered in clinical practice.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3