Comparison of Structural, Electrical and Thermoelectric Properties of Vacuum Evaporated SnTe Films of Varied Thickness

Author:

Tanwar Praveen1,Panwar A. K.2,Singh Sukhvir1,Srivastava A. K.3

Affiliation:

1. Indian Reference Materials, CSIR – National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012, India

2. Department of Applied Physics, Delhi Technological University, Shahbad Daulatpur, Delhi 110042, India

3. CSIR – Advanced Materials and Processes Research Institute, Bhopal 462064, India

Abstract

As a key type of promising thermoelectric (TE) material p-type Tin Telluride (SnTe) vacuum evaporated thin films synthesized at room temperature (RT) on a glass substrate, report a significant enhancement in the figure of merit (ZT) value. The thicknesses of the nanostructured thin films were kept about 145 nm and 275 nm. High-resolution X-ray diffraction (HRXRD) outlines the polycrystalline nature in both thin films. Surface morphology of these films is composed of grains of variable sizes as elucidated by scanning electron microscopy (SEM). This observation is further confirmed by atomic force microscopy (AFM) wherein the average roughness, surface skewness, and surface kurtosis parameters are used to analyze the surface morphology. Local microstructural features and crystalline structure have been confirmed from High-resolution transmission electron microscope (HRTEM) and the selected area electron diffraction (SAED) pattern, respectively. Four probes method was used to determine electrical measurements which confirm that the thin films have semi-metallic nature. Thermoelectric measurements carried out on these films resulted that the figure of merit increases as the thickness of the film increases. The maximum ZT value of ˜1.02 is obtained at room temperature for the thin film of thickness 275 nm.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3