Efficiency Enhancement in Organic Solar Cells by Use of Cobalt Phthalocyanine (CoPc) Thin Films

Author:

Rawat S. S.1,Kumar Ashish1,Srivastava R.1,Suman C. K.1

Affiliation:

1. Council of Scientific and Industrial Research-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012, India

Abstract

Cobalt phthalocyanine (CoPc) nano thin films have been introduced as a hole buffer layer in organic solar cells with active layer of Poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The surface morphology and opto-electrical properties of the CoPc thin films have made it an applicable materials for organic solar cells. The nano-thin films of CoPc are continuously distributed over the studied area and the roughness are around 5 to 7 nm for all thickness. The dominant optical absorptions are in the visible range of wavelengths 500 to 800 nm. The CoPc buffer layer is suitable for energy level matching in energy level diagram and enhances the absorption spectrum as well, which facilitate the charge carrier generation, increases charge transport, decreases charge recombination, hence enhance the all device parameters short circuit current density (Jsc), open circuit voltage (Voc) and fill factor (FF). The solar cells efficiency increases by ˜70% and the fill factor increases by ˜45% in comparison to the standard cells. The increase in efficiency and the fill factors of the solar cells may also be attributed to the increasing of shunt and lowering the series resistance of the cells. The cole–cole plots of the devices may be modeled in electrical circuit as a single parallel resistance Rb and capacitance Cb network with a series resistance Rc.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3