A Convenient One-Pot and Rapid Microwave-Assisted Synthesis of Biologically Active s-Triazolo[3,4-b][1,3,4]Thiadiazine and s-Triazolo[3,4-b][1,3,4]Thiadiazole Nanoarchitectonics

Author:

EL-Mahdy Ahmed F. M.1,EL-Sherief Hassan A. H.1,Hozien Zeinab A.1,Kuo Shiao-Wei2

Affiliation:

1. Chemistry Department, Faculty of Science, Assuit University, Assuit 71516, Egypt

2. Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan

Abstract

A rapid and efficient one-pot protocol has been developed for the synthesis of s-triazolo[3,4-b][1,3,4]thiadiazine and s-triazolo[3,4-b][1,3,4]thiadiazole nanoarchitectonics through the reaction of s-triazoles with ketones and nitriles in acetic acid containing a catalytic amount of sulfuric acid under microwave irradiation in excellent yields. With this catalytic reaction, the cheap sulfuric acid as well as other acids were examined as catalysts and the highly toxic and irritating haloketones and halonitriles were avoided to form. The effects of microwave power, temperature, time, solvent and catalyst were examined. This method achieved a better performance; e.g., higher yields, shorter reaction time and easier work-up as compared to other conventional methods. Therefore, the proposed method will be readily applicable to the synthesis of biologically important compounds containing s-triazolo[3,4-b][1,3,4]thiadiazine and s-triazolo[3,4-b][1,3,4]thiadiazole framework.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3