Electrochromic Properties of Reactive Magnetron Sputtered WO3 Thin Films Prepared by Neon as Sputter Gas

Author:

Uday Kumar K.1,Subrahmanyam A.1

Affiliation:

1. Semiconductor Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India

Abstract

Electrochromic phenomenon is an emerging technology for renewable energy applications. Several material oxides used for the electrochromic application, the tungsten oxide (WO3) has shown good coloration efficiency (CE). Present manuscript, we are reporting the results of the coloration efficiency of DC magnetron sputtered WO3 films for electrochromic applications (thicknesses 190 nm to 700 nm) with sputter gas neon at 300 K. Hydrogen and Lithium ions have been intercalated into WO3 lattice for coloration. The CE value is increasing with increase of thickness of WO3 thin films; CE for 700 nm thick films are: 87 cm2/C and 137 cm2/C for H+ and Li+ respectively. The coloration efficiency (CE) observed to be increasing with wavelength. The maximum efficiency of the hydrogen intercalated neon sputtered films achieved at 860 nm wavelength is about 129.9 cm2/C and for the lithium intercalatedWO3 films the maximum efficiency achieved at 780 nm with 238.5 cm2/C. These neon sputtered WO3 thin films show good stability of coloration efficiency even after 500 cycles of coloring and bleaching cycles. The work function of the colored and transparent states of WO3 thin films are 4.513 eV and 4.755 eV respectively. Finally we have fabricated the electrochromic device (ECD) prepared with nafion thin film as an ion conducting layer and the ECD has shown a maximum coloration efficiency (CE) of 112.1 cm2/C.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3