Improvement of Heat Sink Effect Using Zinc Oxide Nanostructure

Author:

Li Yun Guang1,Yoo Hyun Jin1,Baek Changyoon1,Min Junhong1

Affiliation:

1. School of Integrative Engineering, Chung-Ang University, Seoul 06974, South Korea

Abstract

Heat sinks that dissipate heat effectively play a significant role in devices with high-precision temperature control, such as thermal cyclers for polymerase chain reaction (PCR). This study was carried out to develop a heat sink with a high thermal conductivity to dissipate heat effectively. To increase the surface area of the heat sink, zinc oxide (ZnO) nanostructures were fabricated on an aluminum plate. ZnO nanostructures were fabricated by hydrothermal method and confirmed by scanning electron microscopy and X-ray diffraction. With the increase in the concentration of the precursors, the length of the nanorods increased, and with longer reaction time, nanostructures connected with higher stability and larger surface area. Thermal conductivity is increased by ZnO nanostructures and is affected by the concentration of precursors and the reaction time. Thermal conductivity of an optimal ZnO-coated Al plate is 2 times higher than that of a bare one. This technology can be applied to portable PCR devices to reduce weight, size, and power consumption.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3