Therapeutic Effects of Paclitaxel Loaded Polyethylene Glycol-Polylactic Acid-Glycolic Acid Copolymer Nanoparticles on Pancreatic Cancer in Rats

Author:

Fu Yu1,Tan Ludong1,Meng Lingyu1,Lei Xuexue1

Affiliation:

1. Department of Hepatobiliary and Pancreas Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China

Abstract

To establish a simple and safe method for the preparation of paclitaxel PEG-PLGA nanoparticles emulsified in tpgs (PTX-pegpllga-np), for high drug loading; and to study its effect on proliferation and apoptosis of human pancreatic cancer cell line MIAPACA-2. PTX-PEG-PLGA-NP was prepared by one-step precipitation, using tpgs as emulsifier. The drug loading and particle size were used as an index to optimize the formulation, and the physical and chemical properties such as in vitro release and stability were characterized. The uptake of fluorescein coumarin 6 (C6) loaded PEG-PLGA-NP by MIAPACA-2 cells was observed by fluorescence microscope, and the growth and apoptosis of MIAPACA-2 cells after PTX-PEG-PLGA-NP were detected by MTT and flow cytometry respectively. The entrapment efficiency of the nanoparticles was 90.26%, the drug loading was 10.13%, the average particle size was 92.3±3.1 nm, and the zeta potential was 10.48±1.54 mV. The cumulative releases of nano preparation and general preparation (Taxol injection) in four hours were 25.9% and 98.5%, respectively; and the former had a strong sustained-release effect. The results of cell uptake experiments showed that the uptake of c6-PEG-PLGA-NP by MIAPACA-2 cells increased gradually with time. MTT results showed that PTX-PEG-PLGA-NP had no significant difference in the inhibition rate of MIAPACA-2 cells compared with PTX group. Flow cytometry showed that PTX-PEG-PLGAnp was superior better than PTX in inducing apoptosis in MIAPACA-2 cells. The tpgs emulsification method is simple and environment-friendly. The paclitaxel loaded nanoparticles prepared through the optimization of the formulation have large drug loading capacity and uniform particle size, which can target the pancreatic cancer MIAPACA-2 cells, and do not weaken its ability to inhibit the growth of MIAPACA-2 cells. The nanoparticles also induce apoptosis in cancer MIAPACA-2 cells, and could be used for further clinical treatment of pancreatic cancer.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3