Affiliation:
1. School of Chemical Engineering, Yeungnam University, Gyeongsan-si, 38541, Korea
2. Department of Organic Materials and Polymer Engineering, Dong-A University, Busan, 49315, Korea
Abstract
In this study, we environment-friendly developed bio-based waterborne polyurethane (BWPU) through the use of both harmless water to human instead of organic solvent and natural castor oil-based polyols. Also, high crystallinity cellulose nanocrystals (CNCs) and regenerated cellulose
nanoparticles (RCNs) with low crystallinity as reinforcing agents were prepared through H2SO4 and NaOH/urea methods, respectively. In SEM analysis, we defined that the CNC rod-like particles have a length of 100~200 nm and a width of several tens nm and that the average
size of RCNs with round shape was 7~20 nm. It was shown that the crystallinity of CNCs was higher than RCNs’ via FTIR and XRD analysis. In addition, it was found that as the contents of CNCs and RCNs increased, so did the properties of strength, initial modulus, and strain. It could
be established that all results mentioned were constituted by the hydrogen bonding between the -OH group of nanocellulose and the -NCO group of BWPU constitutes as well as the role of nanocellulose as a chain extender. Furthermore, the maximum decomposition temperature increased with raising
the content of nanocellulose. This tendency was more favorable for CNCs with higher crystallinity than RCNs with low crystallinity.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献