Improvement of Oxygen Mobility with the Formation of Defects in the Crystal Structure of Red Mud as an Oxygen Carrier for Chemical Looping Combustion

Author:

Kwon Byung Chan1,Kang Misook2,Park No-Kuk1,Lee Tae Jin1,Baek Jeom-In3,Kim Ui-Sik3,Ryu Ho-Jung4

Affiliation:

1. School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Korea

2. Department of Chemistry, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Korea

3. Korea Electric Power Corporation Research Institute, 105Munji-ro, Yuseong-gu, Daejeon, 34056, Korea

4. Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Korea

Abstract

Fe2O3 is the major component of red mud, which is a by-produced after eluting aluminum from bauxite in the Bayer process, and can be used as an oxygen carrier. On the other hand, red mud is unsuitable for using oxygen in the crystal lattice because of its low surface area. In this study the red-mud sample was sulfidated at high temperatures to improve the lattice oxygen mobility by forming lattice defects in the iron oxide crystals. To form crystal defects on red mud, iron oxide was converted to iron sulfide with hydrogen sulfide, and then re-oxidized by air to remove the sulfur components. In these processes, it was possible to generate defects could be generated in the crystal structure. Crystal defects are formed by the difference in the molar volume of oxygen and sulfur bound to the metal in the oxidation-sulfidation process. The surface area of the defective red mud increased from approximately 25.9 m2/g to 122.1 m2/g, and the pore volume increased from 0.1714cc/g to 0.2803 cc/g. In addition, the formation of crystal defects increased the oxygen transfer capacity of red mud from 1.75% to 2.25% at 15 vol.% hydrogen. This means that the amount of oxygen transported during the reduction process could be enhanced approximately 1.29 fold.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3