Study on the Method of Isolating the Aptamer from the Surface of HepG2 Cells

Author:

Guo Zhukang1,Wang Chao1,Li Song2,Chen Zhu2,Deng Yan1,He Nongyue1

Affiliation:

1. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China

2. Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China

Abstract

The hepatocellular carcinoma (HCC) is a malignant tumor that occurs in the liver. It is a common malignant tumor in clinic. The main reason for its high mortality is its early latency. Therefore, how to accurately determine and test the hepatocellular carcinoma in the early stage has a very positive significance for the treatment. It is an important method for the early diagnosis of the hepatocellular carcinoma to use aptamers specifically binding to hepatocellular carcinoma cells, which has good application prospects. In order to improve the efficiency of aptamer selection of tumor cells, our group designed and developed an automated instrument for the aptamer selection. In this paper, the method to separate bound aptamers from the surface of HepG2 cells in automated selection process was studied, and the feasibility of separating binding aptamers from the HepG2 cell surface using ultrapure water and the effect of different temperature environments on its isolation were discussed. Results of the real-time fluorescent PCR and flow cytometry showed that ultrapure water could be used to isolate bound HepG2 cells and aptamers, and the concentration of the aptamers increased with the rise of the temperature between 25 and 80 degrees Celsius. This result will contribute to the improvement on the efficiency of automated selections for aptamers corresponding to HepG2 cells.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3