Preparation of Nano-Silver-Containing Polyethylene Composite Film and Ag Ion Migration into Food-Simulants

Author:

Deng Jing1,Ding Quan Ming1,Li Wen2,Wang Jian Hui3,Liu Dong Min3,Zeng Xiao Xi2,Liu Xue Ying2,Ma Liang2,Deng Yan2,Su Wei2,Ye Bin1

Affiliation:

1. College of Packaging and Material Engineering, Hunan University of Technology, Zhuzhou 412007, Hunan, China

2. Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China

3. School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China

Abstract

Nano-composite films were developed between silver nanoparticles (Ag NPs) and a low-density polyethylene (LDPE) using master batches by melt extruding and melt compounding. The Ag/PE composite film showed decreased gas permeability, moisture permeability coefficient, the tear strength, the longitudinal and transverse elongation to that of commercial LDPE. Although stiffness increased at high Ag (40 ppm) concentration, but the longitudinal and transverse tensile strength enhance comparing with commercial PE. Light transmittance and haze were comparable. Both Nano-silver and composite films are effective against Escherichia coli (E. coli). Antibacterial activity of nano-silver for E. coli was determined by diameter of the inhibition zone and the minimum inhibitory concentration of nano-silver is detected by tube double dilution method reaching 15.63 ppm. The composite films are effective inhibition of E. coli at concentrations of 40 ppm Ag nanoparticles. Moreover, Nano-silver migration occurs in composite film. One-side migration was conducted to detect under three food simulants (3% acetic acid, 50% ethanol and distilled water) at three degree of temperature (25 °C, 40 °C and 70 °C) on different period of time (2, 4, 6, 8, 10 and 12 hours). These results indicated that the highest migration amount was obtained with 3% acetic acid following distilled water and finally 50% ethanol under same conditions. The migration level is dependent upon time and temperature and high migration time and temperature can enhance migration level. These findings demonstrate that nano-silver-containing polyethylene composite film may have a great potential for developing antibacterial and acid food packaging system.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3