Preparation of Programmed Death-Ligand 1 Antibody Nanoparticles and Their Lung Cancer Targeting Therapeutic Effects

Author:

Xing Jiaqiang1,Xin Benqiang1,Xia Hui1

Affiliation:

1. Department of Thoracic Surger, Linyi Cancer Hospital of Shandong Province, Linyi 276000, Shandong, PR China

Abstract

The antibody nanoparticles of programmed death-ligand 1 (PD-L1) were prepared and their characterization, drug loading ability, and targeting effect were evaluated. In addition, adriamycin-loaded lipid polymer nanoparticles (hereafter referred to as nanoparticles) were synthesized by a double emulsion method and thin film dispersion method and were coupled with PD-L1 antibody nanoparticles. The cytotoxicity of nanoparticles to A549 cells was detected in vitro, and the uptake of nanoparticles was detected by flow cytometry and confocal microscopy. The tumor model of A549 lung cancer in nude mice was established; the targeting and therapeutic effects of PD-L1 antibody nanoparticles were evaluated by in vivo imaging. The results showed that the synthesized nanoparticles were concentrated in 100–200 nm, and hydrochloric acid was used as the main drug. The encapsulation rate of adriamycin was 60.24%, and the drug loading content was 5.62%. The cell survival rate of the non-drug loaded nanoparticle group was not different from that of the normal group, and the cell survival rates of the 10 μg · mL−1 and 20 μg · mL−1 adriamycin nanoparticle groups were significantly lower than those of the free adriamycin group (P < 0.05). Flow cytometry showed that the PD-L1 antibody concentrations of 10 μg·mL−1 and 20 μg·mL−1 of adriamycin were significantly lower than those of the same concentration in the adriamycin group (P < 0.05). The fluorescence intensity of the nanoparticle group was significantly higher than that of the nanoparticle group at the same concentration. Animal experiments showed that the tumor volume of the PD-L1 antibody nanoparticle group was significantly smaller than that of the PBS (phosphate buffer) control group and the free adriamycin group.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3