Fabrication of Magnesium Ferrites for Enormous Adsorbance of Neutral Red and Their Electrochemical Properties

Author:

Liu Min1,Li You2,Wang Zhou3,Liu Rui-Jiang2

Affiliation:

1. The People’s Hospital of Danyang, Zhenjiang 212300, P. R. China

2. School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China

3. College of Vanadium and Titanium, Panzhihua University, Panzhihua 617000, P. R. China

Abstract

Magnetic magnesium ferrite nanoparticles were fabricated via the ethanol-assisted solution combustion and gel calcination route. The scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectrometer, Brunauer-Emmett-Teller (BET) surface area measurement, vibrating sample magnetometer (VSM) and X-ray diffraction (XRD) were applied to characterize magnetic magnesium ferrite nanoparticles which were prepared under the condition of 20 mL absolute alcohol and calcined at 600 °C for two hours. The results showed that the nanoparticles were spinel structure with the saturation magnetization of 183 emu·g−1, the average grain size of 52 nm, the specific surface area of 33.2 m2 · g−1. In addition, the electrochemical property and adsorption mechanism of neutral red (NR) onto the magnetic MgFe2O4 nanoparticles were investigated. The adsorption results were conformed to the pseudo-second-order adsorption kinetic and Temkin model, which implied that the multimolecular layer chemical adsorption had occurred. Moreover, the pH had little effect on the process of the adsorption, and the value of the magnetic magnesium ferrite nanoparticles for NR adsorption was up to 555 mg · g−1.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3