Preparation and Repeated Repairability Evaluation of Sunflower Oil-Type Microencapsulated Filling Materials

Author:

Tan Xiaoyong1,Zhang Jiupeng1,Guo Dong2,Sun Guoqing1,Zhou Yingying1,Zhang Wenwu3

Affiliation:

1. Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang)an University, Xi)an, Shaanxi 710064, China

2. T. Y. Lin International Engineering Consulting (China) Co., Ltd., Chongqing 401120, China

3. Qilu Transportation Development Group, Ji)nan, Shandong 250101, China

Abstract

Cracks are the main challenges for asphalt pavement, which should be timely repaired. One of the most commonly used repairing methods is to fill the binding materials into cracks, but the repeated repairing ability is insufficient. The self-healing microcapsule technologies provide the potentials for enhancing the repeated repairing ability of filling materials. Therefore, the microcapsule core material was selected from sunflower oil in this study, and the capsular wall material was selected from melamine-urea-formaldehyde resin, which was used to prepare the microcapsule by using in-situ polymerization method. Three kinds of microcapsules with different particle sizes were prepared by adjusting the emulsifier dosage and core wall ratio. The microstructure, molecular structure, thermal stability, and dispersion features were further studied, and the effects of microcapsules with different particle sizes on the repeated repairability of the filling materials were evaluated via the fatiguerepair-fatigue test. In addition, the traditional regenerative microcapsules were compared to determine the optimal particle size range for sunflower oil microcapsules. According to the experimental research, it was thus concluded that the emulsion droplet size distribution was most concentrated when the emulsifier content was 0.7%; and when the core-wall ratio was 1.3:1, the microcapsules had uniform particle size and good dispersion effect. When the microcapsule emulsification rate was 900 rpm and microcapsule content was 2%, then the repeated repair effect for the microcapsule crack filling materials was optimal. The sunflower oil type microcapsule therefore meets the filling temperature requirement for the filler.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3