Superconducting and Electromagnetic Properties of YBaCuO Using Effective Melt Growth Process

Author:

Lee Sang Heon1

Affiliation:

1. Department of Electronic Engineering, Sunmoon University, Asan, Chugnam 31460, Korea

Abstract

The interior seed melting growth (ISMG) method was applied to overcome the shortcomings of the seeded melt growth. According to the results of measuring captured magnetic force at 77 K, the interior side showed a higher captured magnetic force at 2.27 kG the top side at 2.08 kG. The combination of the top seed method and the interior seed method could improve both the magnetic levitation force and the captured magnetic force of both the interior and top sides. When the bulk samples were compared before and after neutron irradiation, the bulk samples after irradiation showed relatively improved material properties when compared to those before irradiation. To measure changes in other material properties by ab/ab + ac sector in YBaCuO bulk single crystal growth, superconducting properties were measured by varying the ab area size area, and when seeding was changed in a vertical direction, higher to measure different property changes in ab/ab + ac sector, it could obtain high magnetic levitation force and captured magnetic force. This result seems to because the ab area with high superconducting properties showed a relatively larger growth.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3