Four-Channel Monitoring System with Surface Acoustic Wave Sensors for Detection of Chemical Warfare Agents

Author:

Kim Jinuk1,Kim Eunhyun1,Kim Jihyun1,Kim Joo-Hyung1,Ha Seonggyun2,Song Changsik2,Jang Won Jun3,Yun Jaesook3

Affiliation:

1. INHA IST and Lab of Intelligent of Devices and Thermal Control, Department of Mechanical Engineering, Inha University, Incheon 22212, South Korea

2. Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea

3. Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon 16419, South Korea

Abstract

Recently, efforts have been made to adapt surface acoustic waves (SAWs) for use in chemical sensors for detection of chemical warfare agents (CWAs). In this study, a four-channel real-time CWA detection system was constructed using four 250-MHz SAW sensors. Each system consists of three different chemical sensors and one reference sensor. The reference sensor compensates for frequency variations according to humidity and temperature conditions. Signals from the SAW sensors can be checked on a PC-based graphical user interface without additional measuring equipment. To measure dimethyl methylphosphonate (DMMP), a simulant of sarin gas, polyhedral oligomeric silsesquioxane (POSS) and thiourea (TU)-based synthetic polymers were used as sensing materials. The reference sensor was not coated, whereas the three different chemical sensors were coated with POSS, TU-1, and TU-2. The maximum frequencies of POSS, TU-1, and TU-2 were shifted 15.86, 13.85, and 0.944 kHz, showing significant values. We also found a relatively good linear relation between the frequency shift and the concentration of DMMP. The three sensing materials selected-POSS, TU-1, and TU-2-responded significantly to DMMP and triethylphosphate in the selectivity tests. This response is due to the chemical bonding of the sensing materials with the phosphonate in the nerve-agent simulants. These results indicate that the four-channel SAW monitoring system described in this paper shows potential as a portable real-time monitoring system to detect a variety of toxic vapors simultaneously, without using complex measuring equipment. In addition, this approach has demonstrated potential for developing excellent portable sensors to detect different types of CWAs.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3