Removal of Pb(II) Ions from Aqueous Solutions by Spherical Nanocomposites Synthesized Through Immobilization of Paecilomyces lilacinus in Silica Nanoparticles Coated with Ca-Alginate

Author:

Ruan Xiaofang1,Li Ruyi1,Ding Zhexu1,Luo Jun1,Liu Qilin2,Deng Chao1,Li Ding1

Affiliation:

1. School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China

2. School of Science, Hunan University of Technology, Zhuzhou 412007, China

Abstract

In the present study, a novel microbial nanocomposite “Paecilomyces lilacinus-silica nanoparticlescalcium-alginate beads” (P. lilacinus-SN-Cal-Alg) were synthesized and their high efficiency for removing Pb(II) ions was demonstrated in aqueous solution. P. lilacinus-SN-Cal-Alg beads before and after the adsorption of Pb(II) were characterized by FT-IR, SEM-EDS, and XPS analyses. The adsorption capacity of Pb(II) by P. lilacinus-SN-Cal-Alg beads was analyzed in aqueous solution. For comparison, the adsorption capacity of Pb(II) by another type of microbial composites, namely, P. lilacinus-Cal-Alg beads, without addition of silica nanoparticles, was also studied in parallel. Lastly, the equilibrium data in adsorption process were examined by both Langmuir and Freundlich isotherm models to evaluate adsorption mechanism. The results showed that an excellent removal efficiency of Pb(II) in aqueous solution (85.54%) was obtained at initial concentration of 200 mg/L by using the P. lilacinus-SN-Cal-Alg beads. Meanwhile, they exhibited the better adsorption capacity for Pb(II) than P. lilacinus-Cal-Alg beads. The adsorption process by P. lilacinus-SN-Cal-Alg beads was best described by the Langmuir model indicating that monolayer adsorption of Pb(II) ions takes place on the beads surfaces and showed that its maximum adsorption capacity was 282.49 mg/g.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3