Wettability, Surface Morphology and Structural Properties of β-FeSi2 Films Manufactured Through Usage of Radio-Frequency Magnetron Sputtering

Author:

Charoenyuenyao Peerasil1,Promros Nathaporn1,Chaleawpong Rawiwan1,Borwornpornmetee Nattakorn1,Sittisart Pattarapol1,Tanaka Yūki2,Yoshitake Tsuyoshi2

Affiliation:

1. Department of Physics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520, Thailand

2. Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan

Abstract

In this research, β-FeSi2 thin films were manufactured onto Si(111) wafer substrates through the usage of radio-frequency magnetron sputtering (RFMS) method at 2.66 × 10−1 Pa of sputtering pressure. The substrate temperatures were varied at 500 °C, 560 °C, and 600 °C. The Raman lines of the β-FeSi2 fabricated at 500 °C revealed the peaks at the positions of ~174 cm−1, ~189 cm−1, ~199 cm−1, ~243 cm−1, ~278 cm−1, and ~334 cm−1. For the higher substrate temperatures of 560 °C and 600 °C, the Raman peaks of ~189 cm−1, ~243 cm−1, and ~278 cm−1 were shifted toward higher Raman positions. The surface view of the films was observed with several grains over the β-FeSi2 film surface at all substrate temperatures. The average grain size of the films for the samples deposited at 500 °C and 560 °C was in the range of 28 to 30 nm, where the size was enlarged to 36 nm at 600 °C of substrate temperature. The root mean square roughness were 10.19 nm, 10.84 nm, and 13.67 nm for the β-FeSi2 film surface prepared at the substrate temperatures of 500 °C, 560 °C, and 600 °C, respectively. The contact angle (CA) values were 99.25°, 99.80°, and 102.00° for the created samples at 500 °C, 560 °C, and 600 °C, respectively. As the acquired CA values, all β-FeSi2 samples exhibited a hydrophobic property with CA in the range of 90° to 150°. Consequently, the produced β-FeSi2 film surface employing the RFMS method indicated a potential to be employed in a hydrophobic coating application.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3