Preparation of Defect-Related Luminescent Mesoporous Silica Nanoparticle as Potential Detectable Drug Carrier

Author:

He Yongju1,Xu Hui2,Liang Shuquan1

Affiliation:

1. School of Material Science and Engineering, Central South University, Changsha, Hunan 410083, China

2. Lab of Nano-Biology Technology, Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China

Abstract

A defect-related luminescent mesoporous silica nanoparticle (DLMSN) with simultaneous excellent luminescence, high drug loading efficiency and release capacity was prepared upon calcination of 3-aminopropyltriethoxysilane (APTES)-functionalized mesoporous silica nanoparticle (AP-MSN) under a relatively moderate temperature. Under ultraviolet excitation at 365 nm, DLMSN exhibited intense white-blue emission with a range of 400–500 nm, which was inferred to originate from the effective carbon or nitrogen defect in the particle causing by APTES calcination. Additionally, the luminescence intensity of DLMSN was significantly affected by APTES concentration and calcination temperature during the preparation procedure. Within all the tested values, the maximum luminescence intensity was achieved when APTES concentration and calcination temperature were 0.851 mmol and 300 °C, respectively. The drug storage and release tests demonstrated that DLMSN had efficient drug storage and good pH-dependent release for ibuprofen (IBU). Interestingly, ibuprofen-loaded DLMSN (IBU@DLMSN) still exhibit an intense luminescence with an emission peak at around 410 nm under 365 nm excitation, which gradually increased with the sustained release of IBU from IBU@DLMSN. These results suggest that the as-prepared DLMSN may have potential as a detectable nanocarrier in the drug delivery field.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3