Affiliation:
1. School of Materials Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
Abstract
The AgBrO3/few-layer g-C3N4 composite photocatalyst has been developed via an in-situ synthetic method. The structure, morphology, light response range, separation and migration efficiency of the photogenerated electron–hole pairs and element valence
state of the as-obtained samples have been characterized. The tetracycline was used to discuss the photocatalytic activities of the samples. The photocatalytic degradation mechanism of the as-obtained composites was also researched. The analysis results show that the photocatalytic degradation
property of the asobtained composite photocatalyst appears to the tendency of first increasing and then decreasing with increasing the amount of AgBrO3 under visible light illumination. When the mass ratio of AgBrO3 to g-C3N4 is 4:3, in 60 min, the
photocatalytic degradation efficiency of the as-obtained composites reaches the maximum of 79%. It is 37% and 45% higher than that of pure AgBrO3 and g-C3N4, respectively. Moreover, the separation and migration efficiency of the photogenerated electron–hole
pairs of the as-prepared composites are also enhanced. In addition, superoxide radicals and holes are the dominant active species during the photocatalytic degradation process.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献