Identification of Circulating Tumor Cells Using Plasmonic Resonance Effect: Lab-on-a-Chip Analysis and Modelling

Author:

Salmanogli Ahmad1,Gokcen Dincer1

Affiliation:

1. Faculty of Engineering, Electrical and Electronics Engineering Department, Hacettepe University, Ankara, 06800, Turkey

Abstract

Circulating tumor cells are widely used as biomarkers of cancer. Although early detection of these cells is vital for diagnosis and prognosis of deadly cancer, it is still a challenging issue due to the complex matrix of blood and their low presence in the bloodstream. In the present study, we propose a micro-channeled lab-on-a-chip system using two distinct methods based upon dielectrophoretic force and electrical properties of cells to increase the cell detection capability and identification efficiency and accuracy. The dielectric properties of cells contribute to the difference between negatively charged residues on the cell surface. Firstly, the dielectrophoretic force is used to separate background cells; then, the proposed high-accuracy identification method is used to better examine and study the unidentified cells. In the next phase, by amplification of the current of the unidentified cells flowing through the nanoparticle plasmonic resonance effects, the microfluidics output efficiency is significantly improved. As a result, highly accurate cell identification is achieved by taking advantage of the nanoparticle plasmonic properties. Overall, nanoparticle scattering in the plasmonic resonance condition, as well as their plasmonic hybridization, can improve output signal-to-noise ratio.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3