Electrical Characteristics Analysis of Bonded Cells for Shingled Modules

Author:

Park Jeong Eun1,Park So Mang2,Choi Won Seok2,Jang Jae Joon2,Lim Donggun1

Affiliation:

1. Department of Chemistry, Sungkyunkwan University Suwon, 16419, Korea

2. Department of Information Display, Hongik University, Seoul, 04066, Korea

Abstract

A shingled module fabricated using electrically conductive adhesive (ECA) can increase the light-receiving area and provide greater power than a conventional module fabricated using solder-coated copper ribbons. However, several issues such as damage from laser cutting and poor contact by the conductive paste may arise. In this study, a 15.675 × 3.1 cm2 c-Si cut cell was fabricated using a nanosecond green laser, and cell bonding was performed using ECA to fabricate shingled modules. If the laser process was performed with high speed and low power, there was insufficient depth for cut cell fabrication. This was because the laser only had a thermal effect on the surface. The cell was processed to a depth of approximately 46 μm by the laser, and it could be seen that the laser cutting proceeded smoothly when the laser process affected more than 25% of the wafer thickness. The cut cell was bonded by ECA, and the process conditions were changed. The highest efficiency of 20.27% was obtained for a cell bonded under the conditions of a curing time of 60 s and curing temperature of 150°C. As a result, the efficiency of the bonded cell was increased by approximately 2.67% compared to the efficiency of the conventional cut cell. This was because the shadow loss due to the busbar was reduced, increasing the active area of the module by eliminating the busbar from the illuminated area.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification Mthod of Ajustable Rsource Load Model for Large-scale Virtual Power Plant Considering Multi-dimensional Characteristics;2023 International Conference on Advances in Electrical Engineering and Computer Applications (AEECA);2023-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3