Enhancement of Electron Emission Properties of Carbon Nanotubes by the Decoration with Low Work Function Metal Oxide Nanoparticles

Author:

Raza Mohammad M. H.1,Khan Sunny1,Sadiq Mohd1,Zulfequar Mohammad1,Husain Mushahid1,Ali Javid1

Affiliation:

1. Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025, India

Abstract

In the present report, the properties of the field emission devices of carbon nanotubes (CNTs) were remarkably improved by decorating their surface with magnesium oxide nanoparticles (MgO NPs). The MgO NPs were attached effectively on the surface of CNTs via thermal evaporation. The Raman spectra confirm the graphitic order of as-grown pristine CNTs with RBM (radial breathing mode), D band and G band peaks at the 282 cm−1, 1347 cm−1 and 1594 cm−1 respectively. The peak at 471 cm−1 indicates successful attachment of MgO NPs to the CNTs. The enhanced field emission properties of CNTs were mainly attributed to the MgO NPs which increased the field enhancement factor and the density of emission sites. The decreased work function and increased field enhancement factor were responsible for the improved FE properties of the CNTs. Our results indicate that the MgO decorated CNTs can be used as an effective field emitter for various electron emission devices. The turn-on field decrease from 1.6 V/μm to 1.3 V/μm and the maximum current density increases from 1.581 to 3.678 mA/cm2 after the decoration of CNTs with MgO NPs. The value of field enhancement factor (β) also increases from 2.814×103 to 9.823×103.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3