Formation of Nano/Micro Hierarchical Structures on Titanium Alloy Surface by a Novel Etching Solution

Author:

Kim In-Hye1,Im Jae-Seung1,Lee Mun-Hwan2,Min Bong Ki3,Son Jun Sik4,Hong Min-Ho5,Kwon Tae-Yub5

Affiliation:

1. Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Republic of Korea

2. Department of Medical and Biological Engineering, Graduate School, Kyungpook National University, Daegu 41940, Republic of Korea

3. Center for Research Facilities, Yeungnam University, Gyeongsan 38541, Republic of Korea

4. Korea Textile Development Institute, Daegu 41842, Republic of Korea

5. Institute for Biomaterials Research and Development, Kyungpook National University, Daegu 41940, Republic of Korea

Abstract

A new effective oxidative solution for titanium (Ti) surface etching was recently developed. The present in vitro study was aimed at determining the influence of shorter (than 240 min) treatment time on the surface characteristics of the Ti nano/micro hierarchical structures. Cylinder-shaped Ti grade 5 alloys were etched for 30, 60, 120, and 240 min at room temperature and cleaned successively with acetone, ethanol, and distilled water in an ultrasonic bath. The micro- and nanostructures, surface roughness, dynamic wettability, and the surface elemental composition of the etched surfaces were evaluated. Nano/micro hierarchical structures, composed of micro-pits and nano-channels, were formed on the Ti surface through simple immersion in the oxidative solution. The findings suggest that the 120-min immersion yielded significant enhancement in the roughness and wettability of the Ti surfaces.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3