Affiliation:
1. School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
Abstract
The correlations among magnetic properties, synthesis temperature, and composition of FeCo nanoparticles were investigated herein. Fe80Co20 alloy nanoparticles synthesized at different temperatures (383, 393, 403, 413, 428, and 443 K) showed variable compositions
and aggregation degrees of the FeCo nanoparticles. Under the optimized conditions of synthesis temperature of 403 K and duration of 1 h, FeCo nanoparticles were synthesized at molar ratios of 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, and 1:9. The FeCo alloy nanoparticles were characterized by
scanning electron microscopy, transmission electron microscopy, X-ray diffraction, vibrating sample magnetometer, fourier transform infrared, and network analyzer. With increasing Co content, the extent of aggregation increased. The cobalt ferrite phase was detected under some conditions,
and all FeCo nanoparticles showed high saturation magnetization and low coercive forces. The prepared FeCo nanoparticles exhibited high permeability at a high frequency range.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献