Affiliation:
1. Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, Korea
Abstract
Multiscale hierarchy is a promising chemical approach that provides superior performance in syner-gistically integrated microstructured fibers and nanostructured materials in composite applications. The main purpose of this work was to introduce graphene oxide (GO) between an epoxy
matrix and basalt fibers to improve mechanical properties by enhancing interfacial adhesion. The composites were reinforced with various concentrations of GO. For all of the fabricated composites, the optimum GO content was found to be 0.5 wt%, which improved the interlaminar shear strength
and fracture toughness by 66.2% and 86.1%, respectively, compared with those of neat composites. We observed a direct linear relationship between fracture toughness and certain surface free energy. In addition, the fracture toughness mechanisms were illustrated using a crack theory based on
morphology analyses of fracture surfaces. Such an effort could accelerate the conversion of multi-scale composites into high-performance materials and provide rational guidance and fundamental understanding toward realizing the theoretical limits of mechanical properties.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献