Nanoarchitectonics Composites of Thermoplastic Starch and Montmorillonite Modified with Low Molecular Weight Polylactic Acid

Author:

Li Peixian1,Guo Huimin2,Yang Kaixiong1,Yu Xiaoyan2,Qu Xiongwei1,Naito Kimiyoshi3,Zhang Qingxin1

Affiliation:

1. National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China

2. National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China

3. Polymer Matrix Hybrid Composite Materials Group, Research Center for Structural Materials (RCSM), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan

Abstract

Nano montmorillonite (MMT) was modified by low molecular weight polylactic acid (PLA), then, the PLA modified MMT and raw MMT were added into thermoplastic starch (TPS) to prepare biodegradable nanocomposite films, respectively. For both nanocomposite films with raw MMT and modified MMT, the Tmax of degradation was enhanced and the mechanical properties were improved. The composite films containing 4 wt.% MMT displayed tensile strength of 5.06 MPa, approximately 1.4 times of that for the pure TPS films. The tensile strength of composite films containing 4 wt.% modified MMT is 6.74 MPa approximately 2 times of those for pure starch films. On the other hand, the composite film containing 4 wt.% modified MMT displayed elongation at break as high as 34.25%, which is 1.3 times of that of the pure starch film, while the composite films containing raw MMT had reduced elongation at break. This study showed that the MMT modified with PLA could significantly enhance the mechanical properties of TPS, and provides a new method to prepare fully biodegradable starch-based nanocomposites.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3