Characteristics of TAA–ZnS Buffer Layer by Addition of Sodium Citrate for CIGS Thin Film Solar Cell

Author:

Park Jeong Eun1,Park So Mang2,Bae Eun Ji2,Lim Donggun1

Affiliation:

1. Department of Electronic Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju-si, Chungbuk, 27469, Korea

2. Department of IT Convergence, Korea National University of Transportation, 50 Daehak-ro, Chungju-si, Chungbuk, 27469, Korea

Abstract

Zinc Sulfide (ZnS) is an environmentally friendly material with a wide bandgap (Eg = 3.7 eV) comparable to that of cadmium sulfide (CdS) (2.4 eV), which is conventionally used as buffer layer in Cu(In,Ga)Se2 (CIGS) thin film solar cells. Conventional ZnS buffer layers are manufactured using thiourea, and, these layers possess a disadvantage in that their deposition rate is lower than that of CdS buffer layers. In this paper, thioacetamide (TAA) was used as a sulfur precursor instead of thiourea to increase the deposition rate. However, the ZnS thin films deposited with TAA exhibited a higher roughness than the ZnS thin films deposited with thiourea. Sodium citrate was therefore added to increase the uniformity and decrease the roughness of the former ZnS thin films. When sodium citrate was used, the thin films demonstrated a high transmittance via the controlled generation of particles. In the case of TAA–ZnS thin films doped with a sodium citrate concentration of 0.04 M, the granules on the surface disappeared and these thin films were denser than the TAA–ZnS thin films deposited with a lower sodium citrate concentration. It is considered that the rate of the ion-by-ion reaction increased due to the addition of sodium citrate, thereby resulting in a uniform thin film. Consequently, TAA–ZnS thin films with thicknesses of approximately 40 nm and high transmittances of 83% were obtained when a sodium citrate concentration of 0.04 M was used.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3