Effects of Diffusion Thermo and Thermal Diffusion on an Unsteady MHD Dissipative Squeezing Flow of Casson Fluid Over Horizontal Channel in the Presence of Radiation and Chemical Reaction

Author:

Vuppala Nagaraju1,Mamidi Raja Shekar2

Affiliation:

1. Department of Mathematics, CMR College Of Engineering and Technology, Medchal Road, Hyderabad, Telangana, 501401, India

2. Department of Mathematics, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India

Abstract

This study analyses the impacts of Diffusion thermo and thermal diffusion on the magneto hydrodynamic (MHD) squeezing Casson fluid flow through a porous medium under the slip condition with viscous dissipation the presence of chemical reaction and thermal radiation. The flow is produced when two plates are compressed together in close proximity to one another. Using similarity variables may successfully convert partial differential equations (PDEs) to ordinary differential equations (ODEs). The shooting technique was used to perform the numerical analysis, which entailed solving the competent governing equations with dominating parameters for a thin liquid layer. This was done to determine the results of the study. It is essential to evaluate the numerical results in light of previously conducted research to validate the current answers. According to the results, an increase in the distance between the two plates leads to a rise in the velocity and the wall shear stress. The velocity diminishes due to an increase in the Hartmann and Casson parameters, whereas the reverse behaviour has been observed in the case of temperature and concentration. The opposite behaviour has been observed in temperature with increasing Diffusion thermo and thermal diffusion parameters.

Publisher

American Scientific Publishers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3