Numerical Investigation of Hybrid Nanofluid Natural Convection and Entropy Generation in a Corrugated Enclosure with an Inner Conducting Block

Author:

Samadder Mandira1,Ray Rajendra K.1

Affiliation:

1. School of Mathematical and Statistical Sciences, Indian Institute of Technology Mandi, 175075 Mandi, India

Abstract

Current work deals with a numerical analysis of convective heat transfer and entropy generation inside a rectangular cavity with a corrugated bottom filled with MoS2–SiO2-water hybrid nanofluid. Here, a conducting solid body is attached to the top wall, and discrete heaters are attached to the bottom wall of the cavity. The numerical solutions of the governing equations are derived utilizing a higher-order compact (HOC) finite difference scheme and validated with the existing computational and experimental results. Present numerical results are then studied in detail, emphasizing isotherms, streamlines, and local entropy generation with respect to specific parameters like Rayleigh number (103Ra ≤ 106), the volume percentage of nanoparticles (0% ≤ Φ ≤ 4%), the thermal conductivity of solid body (1.95 ≤ ks ≤ 16.00) as well as the aspect ratio of heater length (AR = 0.2, 0.4, 0.6, 0.8). The impacts of key factors on the Bejan number, average Nusselt number, and overall entropy generation are also investigated. The results show that an increase in the thermal conductivity of the solid body from 1.95 to 16.00 increases the average Nusselt number and total entropy generation by 9.17% and 40.07%, respectively, for AR = 0.2, Ra = 106, and Φ = 4%. In addition, the average Nusselt number and total entropy generation decrease by 59.11% and 61.99%, respectively, for ks = 16.00, Ra = 106, and Φ = 4% when the aspect ratio of heater length increases to 0.8.

Publisher

American Scientific Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3