N/O dual-doped hierarchical porous carbon boosting cathode performance of lithium—sulfur batteries

Author:

Feng La-Jun1,Lu Man1,Shen Wen-Ning1,Qiu Xin-Yu1

Affiliation:

1. School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China

Abstract

A combination of NaOH activation and continuous pyrolysis of biomass is used to prepare N and O dual-doped hierarchical porous carbon as the carrier of Li—S batteries from egg, yolk and albumen respectively. Among the three sources, the biomass porous carbon derived from albumen has the most abundant hierarchical pore morphology. Its specific surface area, average pore diameter, and sulfur loading are 693.0 m2 · g−1, 3.1 nm and 62.0 wt.%, respectively. The albumen-derived porous carbon/sulfur (AC/S) electrode exhibits excellent reversibility and electrochemical performance (1115 mAh · g−1 at 0.05 C) due to the synergistic effect of hierarchical pore structure and element doping. The rate capacity of AC/S is 15% and 25% higher than that of egg-derived porous carbon/sulfur (EC/S) and yolk-derived carbon/sulfur (YC/S) at 2 C. And the capacity retention rate of AC/S after 50 cycles is 77%, which is 15% and 11% higher than those of EC/S and YC/S, respectively.

Publisher

American Scientific Publishers

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3