LncRNA Small Nucleolar RNA Host Gene 11 Modulates Ferroptosis in Renal Tubular Epithelial Cells via miR-324-3p/GPX4 Axis in Acute Kidney Injury

Author:

Li Xin1,Zhang Lei2,Chen Guixiang1

Affiliation:

1. Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China

2. Division of Nephrology, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, 200940, China

Abstract

Role of ferroptosis in acute kidney injury (AKI) is not fully uncovered. We aim to explore a novel role that SNHG11/miR-324-3p modulated ferroptosis in AKI via modulating GPX4. To mimic AKI in vivo, 6-week male C57BL/6 mice were administrated with lipopolysaccharide (LPS). shRNA (sh-NC or sh-SNHG11), miRNA antagomir (antagomir-NC or miR-324-3p antagomir), miRNA agomir (agomir-NC and miR-324-3p agomir) were injected in mice to regulate SNHG11 and miR-324-3p, respectively. To stimulate the in vitro model of AKI, HK-2 cells were incubated with LPS for 6 h, followed by the transfection with shRNA (sh-NC or sh-SNHG11), miRNA mimics (mimics-NC or miR-324-3p mimics), miRNA inhibitor (inhibitor-NC and miR-324-3p inhibitor), respectively. Co-transfection of miR-324-3p mimics and SNHG11-wt decreased the relative luciferase activity, suggesting miR-324-3p was the target of SNHG11. SNHG11 silence increased miR-324-3p expression in LPS-stimulated HK-2 cells. Both of SNHG11 silence and miR-324-3p upregulation aggravated LPS-induced ferroptosis and kidney injury, and decreased GPX4 whereas downregulation of miR-324-3p inhibited LPS-caused impairment, and increased GPX4 in AKI models. In AKI models with SNHG11 silence, upregulation of miR-324-3p further enhanced ferroptosis and kidney injury, and resulted in the lower expression of GPX4. Decreased SNHG11 caused miR-324-3p upregulation in renal tubular epithelial cells, which led to GPX4 reduction that trigger ferroptosis in AKI.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3