Affiliation:
1. Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
2. Division of Nephrology, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, 200940, China
Abstract
Role of ferroptosis in acute kidney injury (AKI) is not fully uncovered. We aim to explore a novel role that SNHG11/miR-324-3p modulated ferroptosis in AKI via modulating GPX4. To mimic AKI in vivo, 6-week male C57BL/6 mice were administrated with lipopolysaccharide (LPS). shRNA
(sh-NC or sh-SNHG11), miRNA antagomir (antagomir-NC or miR-324-3p antagomir), miRNA agomir (agomir-NC and miR-324-3p agomir) were injected in mice to regulate SNHG11 and miR-324-3p, respectively. To stimulate the in vitro model of AKI, HK-2 cells were incubated with LPS for 6 h, followed
by the transfection with shRNA (sh-NC or sh-SNHG11), miRNA mimics (mimics-NC or miR-324-3p mimics), miRNA inhibitor (inhibitor-NC and miR-324-3p inhibitor), respectively. Co-transfection of miR-324-3p mimics and SNHG11-wt decreased the relative luciferase activity, suggesting miR-324-3p was
the target of SNHG11. SNHG11 silence increased miR-324-3p expression in LPS-stimulated HK-2 cells. Both of SNHG11 silence and miR-324-3p upregulation aggravated LPS-induced ferroptosis and kidney injury, and decreased GPX4 whereas downregulation of miR-324-3p inhibited LPS-caused impairment,
and increased GPX4 in AKI models. In AKI models with SNHG11 silence, upregulation of miR-324-3p further enhanced ferroptosis and kidney injury, and resulted in the lower expression of GPX4. Decreased SNHG11 caused miR-324-3p upregulation in renal tubular epithelial cells, which led to GPX4
reduction that trigger ferroptosis in AKI.
Publisher
American Scientific Publishers
Subject
Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering