Preparation of Doxycycline Hydrochloride Guided Tissue Regeneration/Guided Bone Regeneration Membranes Through Electrostatic Spinning for the Treatment of Peri-Implantitis

Author:

Liu Geng1,Li Jianbo2,Shi Xue3

Affiliation:

1. Department of Prosthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China

2. Tianjin Key Laboratory of Metabolic Diseases, Tianjin, 300134, China

3. School of Medicine, Nankai University, Tianjin, 300041, China

Abstract

Objective: The nanofibre membrane with the antibacterial doxycycline (DOX) intermediate layer can direct tissue regeneration and have antibacterial properties. Through the use of electrospinning, we were able to create DOX-loaded guided tissue regeneration (GTR)/guided bone regeneration (GBR) membranes and assess their efficacy in the treatment of peri-implantitis. Methods: Electrostatic spinning was used to create DOX-containing poly(caprolactone) (PCL) nanofibres, and a scanning electron microscope (SEM) was used to examine the membranes’ surface morphology. Results: The synthesised DOX-PCL nanofibres were found to have a smooth surface and a uniform diameter distribution, as revealed by scanning electron microscopy. When the percentage of DOX was raised from 15% to 25%, the fibre diameter shrank from 247.17 nm to 181.34 nm. According to differential calorimetry, the heat absorption peaks for the pre-electrospun PCL and 10% PCL electrospun membranes were most pronounced at 66 °C, while the peaks for the DOX powder showed at 171.5 °C. With the shift in drug loading, carbonization occurred at 223.5 degrees Celsius. PCL underwent a thermal reaction between 60 and 66 degrees Celsius. However, medication loading was strongly correlated with the level of suppression. Agar diffusion results showed that DOX-loaded nanofibre membranes inhibited the growth of Actinomyces (Aa) and Porphyromonas gingivalis; for both bacterial species, the diameter of the inhibition zone grew larger when more drug was added to the membranes. After 1 hour, 4 hours, 12 hours, 1 day, 7 days, and 28 days of the experiment, the cumulative drug release rates of CL+DOX were 19.14%, 36.16%, 44.37%, 59.52%, and 65.150%, respectively. After the initial steep drop during the first three days of the trial, the PCL-DOX release rate stabilised at around 1.61 percent per hour. Minimum concentration was 3.13 g/mL, while PCL-DOX release rate fell from 1.28 percent on Day 4 to 0.51 percent on Day 28. Conclusion: Combining the availability of natural polymeric materials with the reliability of manufactured polymeric materials, the three-layer nanofibre membranes use PCL-GE as a double surface layer and PCL-DOX as an intermediate layer. In addition, the physical insulating qualities of these membranes are maintained, which allows the fibre membrane to perform a sustained antibacterial action and prevents the initial, abrupt release of the medication in the tissue. Peri-implantitis may be treatable with the use of both pharmaceuticals and GTR/GBR technology.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3