A Hierarchically Micro- and Nanofibrous Hybrid Hydrogel Derived from Decellularized Skin Matrix with High Bioactivity and Tunable Mechanical Properties for Accelerated Wound Healing

Author:

Wu Jiahui1,Deng Rongli1,Liu Mingsheng2,Chen Jiaxin2,Bai Ying2,Lu Jiang1,Zhou Jing2,Quan Daping1

Affiliation:

1. Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China

2. Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China

Abstract

Because of its exceptional biocompatibility and bioactivity, decellularized extracellular matrix (dECM) has attracted the interest of researchers in tissue regeneration and wound recovery. However, the processibility of such biomaterial remains a great challenge in tissue engineering. Herein, porcine decellularized skin matrix (pDSM) was enzymatically digested into a pDSM-sol, which was then mechanically mixed with micron-sized short pDSM fibers resulted from wet electrospinning, to eventually achieve a reinforced hybrid hydrogel with interpenetrating nano- and microstructures. The physical properties of this hybrid hydrogel were evaluated by varying the concentration of pDSM-sol, composition of the gel/fiber contents, and the length of short pDSM microfibers. Furthermore, bioscaffolds fabricated by such dual-scale nanofibrous hydrogels were tested in both in vitro laboratory conditions and in vivo living systems to evaluate their proficiency in wound repair. It’s noteworthy that the incorporation of short fibers led to the acceleration of the sol–gel transition, resulting in a significant enhancement of the hybrid hydrogel’s storage modulus, coupled with a reduction in its degradation rate. This hybrid hydrogel, co-cultured separately with human umbilical vein endothelial cells (HUVECs) and RAW264.7 cells, can promote the secretion of vascular endothelial growth factor (VEGF) from both cell types. Additionally, it facilitates the secretion of M2 phenotype characteristic proteins from RAW264.7 cells. Finally, the implantation of hybrid hydrogel scaffolds led to highly facilitated regeneration effects, including wound healing, collagen deposition, suppression of inflammation, and angiogenesis in a skin-defected rat model. These promising results indicate that such hybrid hydrogels with hierarchical micro- and nanofibrous structures have shown great application potential in future regenerative medicine.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Reference57 articles.

1. New dressings, including tissue-engineered living skin;Ramos-e-silva;Clinics in Dermatology,2002

2. Tissue-engineered skin. Current status in wound healing;Bello;American Journal of Clinical Dermatology,2001

3. A review of tissue-engineered skin bioconstructs available for skin reconstruction;Shevchenko;Journal of the Royal Society Interface,2010

4. Skin substitutes for acute and chronic wound healing: An updated review;Dai;Journal of Dermatological Treatment,2020

5. The basics of integra dermal regeneration template and its expanding clinical applications;Chang;Seminars in Plastic Surgery,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3