Ginsenoside Rg1 Attenuates Eccentric Exercise-Induced Muscle Damage via the Modulation of Lipid Peroxidation and Inflammation

Author:

Zhang Qiong1

Affiliation:

1. Physical Education Institute, Jinzhong College, Jinzhong, 030619, Shanxi, PR China

Abstract

Eccentric exercise (EE) may lead to skeletal muscle injury, including oxidative stress and inflammation induction. Ginsenoside Rg1, a glycosylated triterpene present in the traditional Chinese medicine ginseng, was previously shown to prevent the development of multiple diseases through the attenuation of oxidative stress and inflammation. Therefore, this article hopes to investigate whether Rg1 exhibits anti-oxidant and anti-inflammatory effects in eccentric exercise-induced muscle damage (EEIMD). Additionally, Adult male Wistar rats were intraperitoneally injected with Rg1 (20 or 40 mg/kg) every day before EE for 5 consecutive days. The impact of Rg1 administration on levels of serum creatine kinase was evaluated, followed by observation of histological muscle damage through H&E staining. To assess protein nitrotyrosylation, lipid peroxidation and leukocyte infiltration in rat skeletal muscles, the levels of nitrotyrosine, MDA and MPO protein were analysed through western blotting analysis. The inflammatory response was evaluated by detecting iNOS, COX-2, IL-1β, IL-6, MCP-1 and TNF-α mRNA and protein levels in rat skeletal muscles. The regulation of Rg1 on the NF-κB pathway was examined through the analysis of phosphorylated NF-κB p65 and IκBα protein levels. Result display, EE resulted in elevated serum creatine kinase levels, widespread leukocyte infiltration, and notable muscle cell vacuolization and fragmentation in muscles. Furthermore, EE increased nitrotyrosine, MDA, MPO, iNOS, COX-2, IL-1β, IL-6, MCP-1, and TNF-α levels in rats. However, these changes were reversed by Rg1 treatment. Furthermore, EE-induced upregulation in phosphorylated NF-κB p65 and IκBα levels was counteracted by Rg1. Overall, ginsenoside Rg1 plays an anti-oxidant and anti-inflammatory role in EEIMD through suppressing this NF-κB signaling pathway.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Reference57 articles.

1. Development of a novel clinical decision support system for exercise prescription among patients with multiple cardiovascular disease risk factors;Pescatello;Mayo Clinic Proceedings: Innovations, Quality & Outcomes,2021

2. Eccentric, but not concentric muscle contraction induce inflammation and impairs fibrinolysis in healthy young men;Teixeira;Applied Physiology, Nutrition, and Metabolism,2023

3. Eccentric exercise improves myocardial oxygen supply/demand balance with decelerating aortic diastolic pressure decay: The acute and chronic studies;Tagawa;European Journal of Sport Science,2023

4. Effect of eccentric exercise on markers of muscle damage in patients with chronic obstructive pulmonary disease;Mujaddadi;Physiotherapy Theory and Practice,2021

5. Water extracts of Polygonum Multiflorum Thunb. and its active component emodin relieves osteoarthritis by regulating cholesterol metabolism and suppressing chondrocyte inflammation;Li;Acupuncture and Herbal Medicine,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3