Effects of Flavonoid and Saponins on Protecting HaCaT Cells and Ameliorating Ultraviolet Radiation B/Ultraviolet Radiation A-Induced Skin Photoaging

Author:

Hu Xiaohuan1,Jiao Shicheng1,Niu Mu1,Yang Jie1

Affiliation:

1. Department of Dermatology, The Fifth People’s Hospital of Hainan Province, Haikou, 570100, Hainan, PR China

Abstract

The skin serves as a natural barrier in the human body, protecting against pathogenic microorganisms and ultraviolet radiation (UV). Skin photoaging is a physiological stress reaction characterized by skin relaxation, dryness, abnormal pigmentation, and increased wrinkles due to prolonged exposure to ultraviolet radiation. The search and development of natural products that can effectively prevent skin photoaging have gained significant attention. We established the photoaging model by subjecting HaCaT cells and ICR mice to UVB+UBA irradiation. We employed CCK8 to assess the impact of Totol Flavonoid of Lichi Seed (TFLS) and Lychee Seed Saponins (LSS) on cell viability. We evaluated the effects of TFLS and LSS on apoptosis using flow cytometry. We utilized SIRT-IN-1 inhibitor to suppress the activity of SIRT1 and examined the mechanism by which TFLS and LSS alleviate UV-induced photoaging damage in cells and mice. We assessed skin inflammation in photoaging ICR mice through HE staining. We evaluated changes in collagen fibers and glia in the skin of photoaging ICR mice using Masson staining. We employed TUNEL staining to evaluate the apoptosis of skin cells in photoaging ICR mice. We extracted nucleic acid using nano-magnetic beads and detected the expression of SIRT1, TGF-β1, and Smad3 in HaCaT cells and mouse skin tissues using qPCR and WB. The study results demonstrate the protective effect of TFLS and LSS against UV-induced photoaging in HaCaT cells and ICR mouse skin, mitigating the damage caused by UV exposure. The mechanism underlying the attenuation of UV-induced photoaging by TFLS and LSS may involve activation of the SIRT1-TGF-β1/Smad3 signaling pathway.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3